
Application Evaluation Checklist
Use this checklist to guide you through the planning and porting process.

General Information

What does your application do?

1.

Development History and Plans

a. What operating systems and hardware architectures does the
application currently run on?

□ YES □ NO

b. Does the application currently run on the latest version for this
architecture?

□ YES □ NO

2.

If your application already runs on multiple platforms, it is likely to be platform independent,
and therefore, easier to port. However, if the application code is conditionalized per platform,
then minor modifications might be required. For more information, see section "Conditionalized
Code" of the Porting Applications from VSI OpenVMS Alpha to VSI OpenVMS Industry Standard
64 for Integrity Servers Manual.

If you answer YES to b, your application will be easier to port.

When was the last time the application environment was completely recompiled and rebuilt from
source?
a. Is the application rebuilt regularly? □ YES □ NO
b. How frequently?

3.

Applications that are not built frequently might require additional work before being ported.
For example, changes in the development environment might cause incompatibilities. Prior
to porting your applications, confirm that they can be built on the latest version of OpenVMS
for this architecture. For latest version information, refer to the VMS Software official website
(https://vmssoftware.com/products/versions/).

1

Application Evaluation Checklist

Is the application actively maintained by developers who know it well? □ YES □ NO

List developer names and contact information:

Developer Contact

4.

a. How is a new build of the application tested or verified for proper operation?

b. Do you have performance characterization tools to assist with

optimization?

If YES, list the tools and their version numbers:

□ YES □ NO

Tool Version

c. Which source-code configuration management tools are used? List the tools and their version

numbers:

Tool Version

5.

6. Do you have a development and test environment separate from your

production systems?
□ YES □ NO

7. What procedures are in place for rolling in a new version of the application into production?

2

Application Evaluation Checklist

Composition of the Application

Consider the size and components of your application that need to be ported. This will help you
"size" the effort and the resources required for porting. Most helpful is knowing the number of lines
of code.

a. How large is your application?
b. How many modules does it have?
c. How many lines of code?

8.

d. How much disk space is required?

a. Do you have access to all source files that make up your application? □ YES □ NO
b. If you are considering using VSI Services, will it be possible to give

VSI access to these source files and build procedures?
□ YES □ NO

9.

a. List the languages used to write the application. If multiple languages are used, give the

percentages of each.

Language Percentage

b. Do you use PL/I or Ada? □ YES □ NO

10.

If you use Ada, you must rewrite the code because no Ada compiler exists for x86-64. If possible,
VSI recommends rewriting the code into a high-level language using documented system
interfaces.

Similarly, PL/I is not supported on x86-64. If your application has code written in PL/I, VSI
recommends rewriting it in another language such as C or C++. Analyze your code to determine
whether the newer compiler requires changes to the code.

In general, if the compilers are not available on x86-64, you must translate or rewrite code in
a different language. For information on availability of compilers and translators, see the VMS
Software website.

Is there application documentation? □ YES □ NO11.
If you answer YES, note that if any changes were required to the application, the documentation
might have to be updated accordingly.

3

Application Evaluation Checklist

External Dependencies

Consider the system configuration, environment, and software required for developing, testing, and
running your application.

What is the system configuration (CPUs, memory, disks) required to set up a development
environment for the application? (This will help you plan for the resources needed for porting.)

12.

What is the system configuration (CPUs, memory, disks) required to set up a typical user
environment for the application, including installation verification procedures, regression tests,
benchmarks, or work loads? (This will help you determine whether your entire environment is
available on x86-64.)

13.

14. Does the application rely on any special hardware? (This will help you

determine whether the hardware is available on x86-64, and whether the
application includes hardware-specific code.)

□ YES □ NO

What version of OpenVMS does your application currently run on?

VSI recommends having your application running on the latest version for the architecture before
porting it to x86-64.

15.

Does the application require layered and third-party products to run?

a. From VSI, other than compiler RTLs: □ YES □ NO

List the VSI layered products and versions:

VSI Product Version

16.

4

Application Evaluation Checklist

b. From third parties: □ YES □ NO

List the third-party products and versions:

Third-Party Product Version

If you answer YES to a and are uncertain whether the VSI layered products are yet available for
x86-64, check with an VSI sales representative. If you answer YES to b, check with your third-
party product supplier.

a. Do you have regression tests for the application? □ YES □ NO
b. If YES, do they require any particular software product such as VSI

Digital Test Manager?
□ YES □ NO

17.

If you answer YES to a, you should consider porting those regression tests. If you answer
YES to b, VSI Digital Test Manager (part of the DECset product set) is available with this
release of OpenVMS. If you require other tools for testing purposes, contact your VSI support
representative. VSI recommends a disciplined testing process to check regressions in product
development.

Architectural Dependencies

Consider differences between processor architectures and versions of OpenVMS that your
application runs on. The following questions will help you account for the most significant
differences. Consider the changes that might be necessary to application components because of
these differences. Any user-written code or assembly code that depends specifically on the old
architecture must be rewritten.

Does the application use OpenVMS VAX floating-point data types? □ YES □ NO

18.

If you answer YES, note that the default for x86-64 compilers is IEEE floating data types. x86-64
compilers provide for VAX floating support by automatically converting from OpenVMS VAX
to IEEE floating data types. Slight precision differences might result. In addition, run-time
performance will be somewhat slower (compared to the direct use of IEEE floating data types
without conversion), depending on the extent to which the application is dominated by floating
point calculations.

19. a. Does the application use multiple cooperating processes? □ YES □ NO

5

Application Evaluation Checklist

b. If you answer YES, how many processes?
c. What interprocess communication method is used?

 □ Mailboxes □ SCS □ $CRMPSC □ STR$
 □ SHM, IPC □ SMG$ □ DLM □ Other

d. If you use global sections ($CRMPSC) to share data with other processes, how is data

access synchronized? (This will help you determine whether you will need to use explicit
synchronization, and the level of effort required to guarantee synchronization among the parts
of your application. Use of a high-level synchronization method generally allows you to port
an application most easily.)

Does the application currently run in a multiprocessor (SMP)
environment?

□ YES □ NO20.

If you answer YES, it is likely that your application already uses adequate interprocess
synchronization methods.

Does the application use AST (asynchronous system trap) mechanisms? □ YES □ NO21.
If you answer YES, you should determine whether the AST and main process share access to data
in process space. If so, you may need to explicitly synchronize such accesses.

a. Does the application run in privileged mode or link against

SYS$BASE_IMAGE? If YES, why?
□ YES □ NO

b. Does the application depend on OpenVMS internal data structures or
interfaces?

□ YES □ NO

22.

Applications that link against the OpenVMS executive or run in privileged mode might require
additional porting work. Undocumented interfaces in SYS$BASE_IMAGE might have changed on
x86-64.

Applications that depend on OpenVMS internal data structure definitions (as defined
in SYS$LIBRARY:LIB.INCLUDE, SYS$LIBRARY:LIB.L32, SYS$LIBRARY:LIB.MLB,
SYS$LIBRARY:LIB.R64, SYS$LIBRARY:LIB.REQ, and SYS$LIBRARY:SYS$LIB_C.TLB) might
also require additional porting work, as some internal data structures might have changed on
x86-64.

Does the application use connect-to-interrupt mechanisms? □ YES □ NO
If YES, with what functionality?

23.

6

Application Evaluation Checklist

Connect-to-interrupt is not supported on x86-64 systems. Contact an VSI representative if you
need this feature.

Does the application create or modify machine instructions? □ YES □ NO24.
Guaranteeing correct execution of instructions written to the instruction stream requires great
care on x86-64. Any code dealing with specific machine instructions must be rewritten.

Does the application include any other user-written code or assembler
code that depends specifically on the architecture?

□ YES □ NO25.

If you answer YES, rewrite such code. Optimally, rewrite it so that it is independent of
architecture.

Does the application include or depend on any conditionalized statements
in source code or build files, or any code that includes logic that assumes it
is running on VAX, OpenVMS Alpha, or I64 system?

□ YES □ NO26.

If you answer YES, you might have to modify the conditional directives slightly. For more
information, see section "Conditionalized Code" of the Porting Applications from VSI OpenVMS
Alpha to VSI OpenVMS Industry Standard 64 for Integrity Servers Manual.

What parts of the application are most sensitive to performance? I/O, floating point, memory,
realtime (that is, interrupt latency, and so on).

27.

 This will help you determine how to prioritize work on the various parts of your application and

allow VSI to plan performance enhancements that are most meaningful to customers.

Does the application use any OpenVMS Alpha or I64 Calling Standard
routines?

□ YES □ NO28.

If you answer YES, note that applications that use some calling standard data structures and
calling standard routines may have to be modified. For more information about OpenVMS
calling standards, see the VSI OpenVMS Calling Standard.

Does the application use non-standard routine linkage declarations? □ YES □ NO29.
If you answer YES, note that by definition applications with non-standard linkages know the
OpenVMS Alpha or I64 calling standard and might need modification to conform to the x86-64
calling standard.

a. Does the application depend on the format or content of an object file? □ YES □ NO
b. Does the application depend on the format or content of an executable

image?
□ YES □ NO

30.

c. Does the application depend on the debug symbol table content of an
image?

□ YES □ NO

7

Application Evaluation Checklist

If you answer YES to a, b, or c, note that applications that depend on any of these image and
object file data structures must be modified. The industry-standard object and image file layout
called ELF has been adopted by x86-64. The industry-standard DWARF debug symbol table
format has also been adopted. Applications with dependencies on OpenVMS Alpha's object,
image or debug symbol table formats must be modified. For more information, see section
"Reliance on Alpha Object File Format" of the Porting Applications from VSI OpenVMS Alpha
to VSI OpenVMS Industry Standard 64 for Integrity Servers Manual.

31. Does the application use the C asm statement? □ YES □ NO

Does the application use BLISS register Built-ins? □ YES □ NO32.
If you answer YES, note that applications that use the BLISS BUILTIN statement to declare
register built-ins must be modified.

Porting Your Application

Once the preliminary evaluation and planning stages are completed, these are the main porting tasks.

Have you upgraded your system to the latest version available? □ YES □ NO33.
If you answer NO, first upgrade your system before beginning to port the application.

a. Have you test compiled your application on the latest version for your

current architecture, using the most recent version of the compiler?
□ YES □ NO

b. Have you corrected any problems detected during the compile? □ YES □ NO

34.

If you answer NO to a, compile your application on the latest version of OpenVMS for your
architecture, using the latest compiler available. If you answer YES to a but have rewritten
some code since, compile again. After compiling, correct any problems detected. When you have
finished this phase, and when you have responded to all other considerations detailed thus far in
this checklist and in chapters "Migrating Source Modules" through "Other Considerations" of
the Porting Applications from VSI OpenVMS Alpha to VSI OpenVMS Industry Standard 64 for
Integrity Servers Manual, your application is ready for porting to x86-64.

35. Have you copied the modules and related code to x86-64? □ YES □ NO

36. Compile, link, and run the application on the x86-64 system. Is your

application compiled, linked, and running?
□ YES □ NO

37. Perform unit testing on the x86-64 system. Have you completed the unit

testing?
□ YES □ NO

38. Perform system testing on the x86-64 system. Have you completed the

system testing?
□ YES □ NO

8

Application Evaluation Checklist

39. Perform regression testing on the x86-64 system. Have you completed the
regression testing?

□ YES □ NO

Did testing succeed? □ YES □ NO40.
If you answer NO, resolve the problems, then recompile, relink, and retest the application.

9

	Application Evaluation Checklist

